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Abstract —A general method has been developed to evaluate the propa-

gation constant in oversized circular hollow-core waveguides characterized
by a surface impedance and admittance due to a uniform bend. Completely

different formulas are obtained for the attenuation constants of the modes

in metalfic or dielectric hollow waveguides from those obtained by Marcatili

and Schmeltzer [1]. Electric-field lines are also presented for several lower

order modes in bent wavegoides.

I. INTRODUCTION

H OLLOW DIELECTRIC or metallic waveguides are

possible transmission media when the absorption of

dielectric materials are too high to transmit the guided

powers in dielectric media. When optical fibers with low

losses were not available, hollow waveguides were pro-

posed to carry optical signals, and very detailed analyses of

them were done by Marcatili and Schmeltzer [1]. In con-

nection with the delivery of infrared C02 laser energy,

hollow waveguides are regarded again as transmission

media, and several types of hollow waveguides have been

proposed and fabricated [2]–[5]. One of the most serious

problems in hollow waveguides is the increased loss due to

bends.

To evaluate bending losses in circular waveguides, a

theory presented by Marcatili and Schmeltzer [1] (hereafter

referred to as the M-S theory) has been used over the past

two decades in infrared as well as in submillimeter wave-

lengths [1], [6], [7]. However, as pointed out by Miyagi [8],

the M-S theory didn’t consider field deformations depend-

ing on R– 2 (R; bending radius) which substantially affect

the bending losses in their formulation, i.e., the power

losses can be evaluated by the ratio of the radiated power

from a waveguide per unit length and the total power

carried by the mode of the waveguide. Recent experimental

studies on bending losses of the TEOI mode in metallic

waveguides at infrared [9] also suggest that the M-S theory

should be modified so as to include high losses due to the

mode coupling effect. A theory was developed by Marhic

[10] to predict the bending losses by using the mode

coupling analysis similar to one done for waveguides at the
rnicrowaye region [11]. HoweYer, his analysis cannot be
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applied to infrareld metallic waveguides where the imagin-

ary part of the complex refractive index of the metals is

much larger than its real part and the mode structure is

different from that in waveguides at the microwave region

[12]. Therefore, at present, we can say that there are no

theories available to properly predict bending losses in

circular dielectric or metallic waveguides at optical wave-

lengths through submillirneter wavelengths.

In this paper, we present a new method to evaluate the

propagation constants in the general class of circular bent

waveguides characterized by a surface impedance and ad-

mittance. The new method requires evaluation of the field

deformations to J?- 1 only, not to R-2. A general expres-

sion of the propagation constant is obtained which is valid

to any circular waveguide, and explicit expressions of the

phase and attenuation constants are given for waveguides

with a small surface impedance and admittance. It is

shown that the lbending loss formulas obtained for the

metallic or dielectric hollow waveguides are completely

different from thctse of the M-S theory and more accurately

explain the experimental results of high bending losses of

the TEOI mode in circular metallic waveguides [9].

Electric-field lines of the modes in bent waveguides are

also presented.

II. GENERAL EXPRESSIONSOF FIELD

DISTRIBUTIONS AND PROPAGATION CONSTANT IN

BENT WAVEGUIDES

A. Integral Representation of the Change of Propagation

Constant

Let a waveguide with a hollow-core radius T be bent

uniformly with a. large bending radius R. We employ the

toroidal coordinate system [1] for analyses as shown in Fig.

1 and assume thah the refractive index of the hollow-core is

no ( =1), and media in r > T are characterized by a normal-

ized surface impedance Zm and ~=~ at r = T [12], [13] as

follows :

E.

)

Wp(J

-)

Ho = noko

~
. .—zm, - —y,~. (1)

noko E, Up.~z7 ~c7

From the following Maxwell’s equations in the hollow
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By expanding E, H, and ~ as

(12)

H=H(0J+~Htl)+~H(2+ . . . (13)

g“ 6,4
z b=f$+-$w+... (14)

Fig. 1. Coordinate system for the curved circular hollow waveguide.
and substituting (12)–(14) into (8) and (9), one can express
E~i) and E~Z)(i = O,1,2) as follows:

region:

Id
2nokoT2

[( )1 (
@=;~ l+~cosO H, +jPHe=juton~ l+~cos O)E, u’ ()

8~Ej’-21 –2 ‘okOT ‘r
u

(2)
( )[

T2 ~E(I)
.COS6E~i–1) – j —

Qpo 13H$)
nOkO--&+Y—

u &3 1
a– j~H, – ~

[( )1 ( )
l+~cosd Hz =j~con~ 1+; cos8 E6 (15)

2nOkOT2

(3)
E~L) =

U2 ()
8fiE~’-z~ –2 ‘okOT 2r

u

(4) o

18

[( )1 ( );%l+~cos$~.+jPEe=–jupol+~cosd H, where u is defined by

(5)

(16)

(17)

Quantities with negative superscripts are understood to be
(9

– jfiEr – ~
[( )1 ( )

l+~cosfl E= =–japo 1+; cos19 HO zero. One should note that [1, eq. (34)], which describes the

first-order perturbation solution, is incorrect as can be seen

(6) from (15) and (16) of the present paper.
By substituting the corresponding magnetic-field compo-

~_#(rEO)-~ ‘Er nents HJ1) and H~’) into (4), one obtains the differential
— = – j@poH=

r ae (7) equations to determine E:’) (i = 0,1, 2) as follows:

()one can express the t12NISVt3rSe field components by the v ZEJ1)+ ~ 2EJ1) = 2n oko~~E (Z – 2)

axial components E= and Hz as follows: z

1

[

aE
–2n~k~rcos8E~z-1) + j2nokoE~’-1) (1s)

Er=–.-j
U/J/o dHz

(

2
noko-#+— —

)

r do 1
where

n~k~ l+~cosd –/32
E~’–l)= E~’–l)cosO – E$’–l)sin(j (19)

(8) and V2 is defined by

E@= –-j
1

[

noko dEz (7Hz1 V2- 82 ,la+~a2
—. _

( )

2 r ae ‘Po ~r dr 2 r dr r2 ~(j2 “ (20)

n~k~ l+; cos O –/?2
Similarly, one obtains

(9)
()

V2H~’) + ~ 2H~’) = znoko~~H(l-2)

Hr=–tiEfl, HO..!!!?!b E

z

@vo @p. r
(lo) –2n~k~rcosOH~1-1) + j2nokoH~’-1). (21)

Now, let us mention the evaluation method of 8P. In the
where time and z dependence of the form exp j(tit – ~z)

ordinary method of determining the change of the propa-
are suppressed, and it is assumed that

gation constant due to bends. one has to derive a character-.-
nokoT >>1 and R >> T istic equation for 8P which re’quires solutions up to E(2) and

’11) H(2) To do this, extremely tedious and cumbersome calcu-
are needed to derive (8)–(10). One should also note that ~ lations are needed. In this paper, we present a simple
is replaced by n Ok. inside the parentheses in (8) and (9). method which requires solutions only up to E(l) and H(l).
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Making Equation (27) clea~rly shows that the change of the propa-

E to)V 2E:2J – E;2) V 2@0) ation constant can be evaluated by using only zeroth and
(22) ~rst-order field distributions in a bent waveguide. The realz

by use of (18), and integrating in the hollow region, one and imaginary parts of 8B lead to the changes of the phase
obtains and attenuation constants of the modes due to bends,

$[

E(o) 0E)2) E(2) Oqo)

1

respectively.
— ——

2 dr ‘ & ‘c B. Field Distributions and Complex Propagation Constant

/[~ 1= 2noko 8 E~0J2– nokorcos dE~O)E~l) + jE~l)E~O) dS
In this section, we present the expressions of the field

distributions and the propagation constant in the general

(23) ~fl~m~~~~es tith an arbitrary surface impedance

where the Green’s theorem was used to transform the

surface integral in r < T into the line integral around the As is well known, the zeroth order solutions E}”), E~O),
E(o) and H~O) me given as follows [14]:

periphery r = T of the hollow region. Substituting dE:O)/ar z ‘

and dE~2)/ & obtained from (15) into (23), and using the E?) =

[
‘.l.+l(up)] cos(n6+f30)+.i..l(~P)– 2boundary conditions (l), one obtains

[

1
SP /E~0)2 dS + j—

$
1

(28)
Hjo)@) dc

acOn~ Ej”j = –
[

‘J~+l(up)] sin(rd + 6.)9JL1(UP)+ 2

= noko
J[ 11zH:)E:O)dsrcos 19E~)E~1) – j— (29)

ticono E(O)= j

z
‘~, (up)cos(nO+Oo) i
no/coT

(30)

1
+ j—

${
n Okorcos OE~O)H$) – j+

()

nokoticon~ H(o) = . j —.

z
‘P.lfi(up)sin(nO + f30)

~po nokoT
(31)

[

dH@)
z E(o) aHY)@2) 1}ao z ae ‘c

(24) where n is the integer describing the azimuthal dependence
and p is definedl by r/T, The normalized radial phase

where constant u and the parameter P deduced from the boundary

H}) = H~l) sin O + H,$l) cos 0. (25) conditions (1) are determined from

Similarly, integrating H~O)v 2H$2) – H~2) v 2H~0) in the

[

J’(u) ‘TE 1[J’(u)
~ + j-— n ;jYTM

hollow region, one obtains 1—=t (32)
uJ. (u) nokoT uJm(u) nokoT ~4

[
6B fH~0)2 ds – j~ $E~OJH$OJdC 1 P’=~

,[

Jn’(u) . YTM
Up. 1nUJn(U) ‘~nokoT “

(33)

/[ 11E:)@o)ds By substituting (28)-(31) with (10) into (18) and (21),
– noko— rcos OH~O)H~l) + j—

up o and integrating ,E~l) and H~l) (see Appendix A), one ob-

1
tains

– J— ${
n Okor cos OH~O)E$) + j+

Up o
{[

E~l)= jnokoT2 e+ Jn+l(up)+ ~p2J~_1(up)

[

~@3
H(2) aE;O)H;O) — – — 1}ao z ad ‘c”

(26)
+’l+P

1
~pJH(up) cos[(n+l)O+ do]

By making (24)X CMont + (26) X Wo, one finally arrives
at [

+ e_ J._l(up)– ~p2J.+l(up)

+~pJn(up)] cos[(n-l)6 +80]] (34)

li$=J(*)nOkOT2([ ~+ J.+l(UP)–:P2J.-l( UP)

= noko
(/ [

rcos O ocon~E~)E~) + copoH~O)H~l) ] dS
— 1~pJ~(up) sin((n+l)d+flo]

J
+j [Ey Hz 1

(1) (I3 – H:)@O) dS
[

+ h_t,_l(up)+ $p2Jn+1(uP)

$ H+ j rcos f3[ H$)E~O) – E$)H~O) dC . (27)
1

+~pJ. (up) sin[(n–l)e+ do]]. (35)
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The transverse field components

using (15) and (16) as follows:

of E(lJ are calculated by

~(,) = (nokoT)2T
r {*r+(P)cos[(n+l)o+eo]

++r_iP)cos [(n–l)e+eol} (36)

~J,) = _ (nokoT)2T
{td+(~)sin[(n+l) o+%]

+40_(;) sin[(n–l)o+dO]} (37)

where

n+l
+r, (P)= e* J;*l(~P)+ ~i~Jnil(~P)

+ (A? T1)(l TP)
1 2J (up)

4U PJ&(@-@ n

(38)

i@)=h*J;t I(ULI)+ei ~J, fl(up)

+ (n Tl)(17P)

4U PJ. X1( UP)+$P2J.(W).—

(39)

The arbitrary constants e ~ and h ~ determined from the

boundary conditions (1) are expressed as follows (see Ap-

pendix B):

ek =t&{[(n +P)J.+, -uPz,~l
nil

T(l+P)(Jnfl t2zn)](~fl)J. ~1

+[(nl’+l).l n~l-uq+l

-(ii P)(J.i, *2 K)1uZ.il} (40)

h+=++{[(n~+l)~n+,-~%,,
nfl

-(l+ P)(J. i,&2y.)](ntl)JnA1

+[(n+P)J~~l–@Z~71

T(l~P)(J.tl+2Z.)lU~*l} (41)

where the argument of the Bessel functions is u, and 2.,

Y., and A. are defined by

Z~=J;(u)+j ‘zT~J~(u)
nOk07’

(42)

~=~;(u)+j— &~TMJn(u) (43)

AH= u2Zn~ – n2J~(u). (44)

By substituting (34)-(37) into (27) and using some integral

formulas containing the Bessel functions and powers of r

(see Appendix C), we finally arrive at the general expres-

sion of 88 as follows:

~B = (nokoT)3T((e++e_)[nJ~ -(n+ P) J.+lJ._l]
2U2

-(h+ +h_)[nP.7~ -(nP+l)J.+lJ._l]

-(e+ -h+)(l+P)J.JH+,

+(e_+ h_)

.(l-P)JnJn_2

+ #(1- P)2(2JnJn-2 + Jn,,Jn-,)

+(1+ I’)2(2J.J.+Z + J._lJ.+3)]

){
+ 8m1Qcos260 / (1+ P’)(J: – J~+lJ~_l)

+[(1-1’)2J._, -(1+ 1’)2J.+1]:) (45)

where

Q=(e_I’ +h_)J~-(e_+ h_)

.(l+P)JOJ, ++(l-P2)J1J, (46)

and the argument of Bessel functions is understood to be

U. To evaluate e_ and h_ in (46), one has to put n = 1 in

(40) and (41). We have also proven that (45) is exactly the

same with that obtained by using the characteristic equa-

tion after rather tedious calculations.

By dividing u into the real and imaginary parts as

u=u~+jti, (47)

one can deduce the changes of the phase and attenuation

constahts due to bends. However, it is rather cumbersome

to derive them for arbitrary surface impedance and admit-

tance. Furthermore, we are mainly interested in transmis-

sion of the HEII mode in the infrared waveguides with a

small surface impedance and admittance [12], [15]. There-

fore, we will discuss this case in more detail in the next

sections.

III. WAVE PROPAGATION AND ATTENUATION IN

CIRCULAR WAVEGUIDES WITH SMALL SURFACE

IMPEDANCE AND ADMITTANCE

A. Phase and Attenuation Constants

When the following conditions are satisfied:

IZTEI ~ noko~’.uo, I-YTMI ~ ~oko~/Uo (48)

U. is determined from

Jl(uo) = O, TEO~ and TMo~ modes (49)

JnT1(uo)=O, HEHg and EHm~ modes (50)
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and the parameter P becomes

{

co, TEO~ modes

o, TMO~ modes
P=

u; z=~ – y=~
71– .j~ ~OkOT ‘ HE~~ and EH~~ modes

(51)

where the upper and lower lines in (50) and (51) corre-

spond to the HE~~ and EH~~ modes, respectively, and only

the first-order terms of zT~/nOkOT and ym/nOk07’ are

considered in (51).

By substituting P and (49) into (40) and (41), and

retaining the first-order terms of Ui, we can express e + and

h + of the TEOq modes as
—

—

1
e+

(‘e-=J~ ‘i– )
~o~o#TM p (52)

()
h+=–h. =–$ l–j? P (53)

and i?~ as follows:

~B = (nOkOT)3Z’

[(
l+j~ UZ–3*YTM

122.4; )1(54)

which leads to

[ W&m]. (55)
Re(~)=nOkO l+—

As Ui is related to the attenuation constant aw in the

straight waveguide as

UiUo = nokoT2am (56)

and am is

2

am = noko ~ Re(ZTE) (57)
(no;~T)

for the TEo~ modes, one can express the attenuation con,

stants a of the TEo~ modes in the bent waveguides as

follows:

For the TMo~ modes, one has

eh=— e_=
()

~ l–j~

h+=h_=-

and

8P= (nOkOT)3T

12U:

1 ( U.

J2U0
— u*– —Zm

nokoT )

(
l+j~ u,–3

U.
—Zm

)nOko T

(59)

(60)

(61)

TABLE I
I%IASE AND An&UATION CONSTANTS OF THE MODES iN CURVED

CIRCULAR HOLLOW WAVEGUIDES wIm A NORMALIZED SURFACE
IMPEDANCE Zm AND ADMITTANCE yTM.

=@NT 1‘TTEN”ANHfl’TAN1‘0

which leads to the attenuation constants as

where

u;
(rW ‘= nOkO ‘ Re(yTM).

(nOkOT)

The expressions (58) and (62) clearly show

effect between the TEoa and TMOO modes.

(63)

the coupling

For the hybrid modes, i.e., n + O, by using e * and h ~ in

Appendix D, we Ican express 8P as follows:

(OD_ (nokoT)3T ~_ 4n(n +2)

12U; u;

[

2n(n T2)
+j~f l+~n(n T2)+ z 1

3(.zTE + YTM) z
[n +(n%~~]

2

–‘- 2nokoT

3(zm– y~) 2
* jd.l

)
4n k T (uo ‘2)c0S26CI . (64)

00

Table I summarizes the phase and attenuation constants

of all modes normalized by n Ok. and am in the straight

waveguide, respectively, where the attenuation constants

am of the hybrid modes are

1 u;
am =—nk ‘Re(zT~+yw). (65)

2 0 O(nokOT)

It should be noted that only the attenuation constants of

the HEl~ and EHl~ modes depend on the orientation 00 [11.

Let us compare the above results of the attenuation

constants in the, dielectric or metallic hollow waveguides

with those of the M-S theory. Let a complex refractive

index of the medium outside the core be no v. By using a

simple method to calculate the normalized surface imped-
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TABLE II
NORMALIZED ATTENUATIONCONSTANTSa/ri~ IN CURVED

DIELECTRIC OR METALLIC HOLLOW WAVEGUIDES PREDICTED BY

THE M-S THEORY AND OURS

] MODE j M-S THEORY I PRESENT THEORY I

1.0

oL
---.--

M-S Theory - . .

Experimental results
Ref 19)

~Eq(70)

o 5 10 15 20

llR (l/m)

Fig. 2. Transmission versus curvature for the TEOI mode in a circular
silver waveguide with n = 13.4, K = 75.2, 2T = 500 pm, and length of 26
cm at A =10.6 #m. Dashed and solid lines represent the transmission
predicted by the M-S theory and ours, respectively.

ante and admittance [15], one obtains

~TE=(,2_Q-’/’ (66)

~)-1/2
YTM=r2(V2– . (67)

Therefore, the attenuation constants of the modes can be

summarized as in Table 11. The difference between the M-S

and our theories is clearly shown.

For the metallic hollow waveguides with v = n – jm

where n and ~ are much greater than unity at the infrared,

we have

‘e(zTE)=* (68)

Re(~TM)=lZ (69)

and

for the TEOQ modes. By considering the fact that the values
of n 2 + K 2 in most metals at the infrared are about several

thousands, one can see that (70) is quite different from that

of the M-S theory. In fact, (70) can more accurately explain

the measured high curvature losses of the TEOI mode in

metallic waveguides as shown in Fig. 2. Our theory also

predicts that the attenuation constants of the TMO~ and

several hybrid modes reduce due to gradual bends as
shown in Figs. 3 and 4, which is very similar to the

R(m)

50 10 5

‘0 ~“o’

M
z

1? 0
.5 TM02 ,. r

u ~. <

___ 2
2:

TMO, ,’
. 2

0
0 20 40

(~kOT)2TIR

Fig. 3. Attenuation constants of the TMO~ modes in a bent afmninum
waveguide with n = 20.5 and ~ = 58.6. The dashed and solid lines are
a/a~ predicted by the M-S theory and ours, respectively. Right ad

upper scafes in the figure correspond to the attenuation and the
bending radius of the waveguide with T= 500 pm at k = 10.6 ~m.
Small circles correspond to the upper limit of applicability of the
theones (see Appendix E).

R (m)

‘0 ~

+
-5
-6

0K
/

O.=O /’/
HE12 ~ ‘

----------

O.= +

HE2, ,1, .- “

- ./-

co= o
/-

---

HE1l tl~=z

0 10 20

(~kOT)2T/R

Fig. 4. Attenuation constants of the HE,,q modes in a bent atmninum
wavegnide. Parameters are the same with those in Fig. 3.

attenuation constants of higher order modes in slab wave-

guides [8], [16].

B. Electric-Field Lines of Modes in Bent Waveguides

In straight circular hollow waveguides where lZTE]/nokoT

and I~T~l/n #OT are small, we have sufficient knowledge

about the electric- and magnetic-field lines of the modes

[1]. However, no descriptions of them have ever appeared

in bent waveguides,

By simplifying the coefficients e ~ and h+, and the

parameter P by neglecting small quantities of u,,

ZTE /n ~ko T, and yin/n Ok. T, we can express the trans-
verse-field components of the hybrid modes as follows:

E,= J~~l(uOp)cos(ntl +OO)+
(nOkoT)2T

4UOR

-{gn=,(~)cos[(n +l)o+%]

–1’3n+l(p) cos[(n-l)e+eo]} (71)

_ (nokoT)2T
E@= T ~.~l(uop)sin(n$ +do)+

4UOR

“{gn~,(P)sin[(n+1)0+80]

-h.:l(p)sin[(n -l)d+ do]} (72)
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TEO, mode

@@@
TMO, mode

B
HEnmode(130.0)

@
HE2, mode(eO=JW2)

D@

(a) (b) (c)

Fig. 5. Electtic-field lines of themodes incumed hollow wavegtides for
(a) ( nOkOT)2T/R = O, (b) 5, and (c) 10, respectively.

EH,. mode(&=O)

EH,,mode(eO=lr/2)

EH21mode(.90=0)

EH21 mode(t30 =lL/2)

(a) (b) (c)

Fig. 6. Electric-field lines of themodes incurved hollow waveguides for
(a) (n ~koT) 2T/R = O, (b) 5, and (c) 10, respectively.

where

gn(P)=Jn+l(~oP) +P2Jn-l(~oP) (73)

hn(P)=Jn-l(uoP) +P2Jn+l(uoP) (74)

and the upper and lower lines correspond to the HEH~ and

EHm~ modes, respectively. The transverse-field components

of the TEo~ (TMo~) modes are simply obtained by putting

n = O and 00 = r/2(0) in the expression of the HEJEH.~)
modes.

519

Electric-field lines of the modes are determined from

1 dr E,.—
rdfl=~

(75)

and magnetic-field lines are perpendicular to the electric-

field lines in r < T as seen in (10). One should note that the

electric-field lines of the HE1~ modes never change due to

bends [17], although the field distributions change.

Several numerical results obtained by integrating (75) by

the use of the Runge-Kutta method are shown in Figs. 5

and 6 for several lower order modes. Generally speaking,

electric-field lines become unsymmetrical, and some char-

acteristic features peculiar to the modes, e.g., the center of

the electric-field lines in the TEO1 mode and a crossing

point in the TMO1 mode shift toward the outer direction

away from the center of the curvature. Although field lines

behave in complicated ways near the plane of the curva-

ture, they are not so essential because the intensities of the

modes are weak thlere.

IV. CONCLUSION

A general method is presented to evaluate the propaga-

tion constant in circular hollow waveguides. Completely

different formulas are obtained for the attenuation con-

stants of the modes in metallic or dielectric waveguides

from those obtained by Marcatili and Schmeltzer [1].

Attenuation characteristics of the dielectric-coated

metallic waveguidle [12], [15] will be discussed elsewhere

based on the new bending loss formulas.

APPENDIX A

Differential equations for EJIJ and HJ1) are described as

()
v ZE;l) + ; 2E;l)

=–jnoko{[Z@Jn(Z@ )+(l+F’)Jn+l(Z@)l

.cos[(n+l)6+eo]

+[upJn(up)– (l–~).Jn-l(~P)l

.Cos[(n-l)e+e o]} (Al)

()
~ 2j7’(Q + ; 2@l)

=.i
()

* ‘~o~o{[~~PJn(~P) +(l+p)J.+l(~P)l

.sin[(rz+l)d+ do]

+[PupJn(up)+ (l–~)J.-l(~P)l

.sin[(rz -l) f3+Oo]}. (A2)

APPENDIX B

From the boundary conditions (l), we obtain the equa-

tions to determine e + and h * as follows:

“[ 1
e+-.L+l(u)*~J.T1(U)+ -+$ln(u)--

(Bl)
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*o, (1) = - j*zTE

(B2)

APPENDIX C

Several integral formulas to evaluate c$~of (45) are listed

as follows:

J()J; .x xdx=; (J:– Yn+lJn.l) (cl)

fJn*l(x)Jn(~)x’~x= ;(Jn,lJn-Jn+2JnT1) (C2)—

pn.2(~)Jn(x)x3~~ =:(Jni2Jn-Jn+3JnT1) (C3)—

jo J; x X3dX = ;(3J: ‘2 J.+ IJ.. I – JH+zJn-z) (C4)

jJ&(4Jn(x)x4~x=:

.(4Jn~lJn –3Jn+2Jn Tl– Jn~2Jn~3)—

(C5)

where the argument of the Bessel functions in the right-hand

sides of (C1)–(C5) is x.

APPENDIX D

For the HEn~ modes, e + and h ~ are expressed as—

“–zTE-n(:~l)pl[l-4n(r)l-12.40

nokoT

(Dl)

e.=–~+j
[

* (n-l) ul-(n-2)
o

(D2)
U. n(n+l)p

“ ‘-YTM + ~. ~nokoT 1

‘([n+l)(l-~)ui-n*J’”lMfi+=++o

[
+ uo–

2n(n+l)

U.

h.=–:+j~
{

(n-
0

To obtain the coefficients e + and h + for the EH.~

modes, we first change n to –; in (Dlj–(D5) and only

replace – e_, – e+, h_, and h+ of the HE~~ modes by

e+, e_, h+, and h_ of the EH.~ modes.

APPENDIX E

We discuss the range of applicability of bending loss

formulas given in Table I. For the electric and magnetic

fields obtained by the perturbation theory to describe the

actual fields properly, it is necessary that

R >> R, (El)

where RI is defined by

1
/llj”)lm= = &%u or llljo)l~a = ~llf$)l~m.

(E2)

For the TEo~ and TMo~ modes, we obtain

R = (nokoT)2T
1 2U0

(1-p2)Jl(uop)+: pJo(uop)
max

(E3)

and

[

R = (nokoT)2T ,J ~l(uop)l
I 4U0 n

1
+lJn+l(Uop)+ P2Jn T1(uoP)] /tJn(~oP)lmax (E4)

—
mm

for the “hybrid modes, where the upper and lower lines

correspond to the HE.~ and EH.~ modes, respectively.

Equations (E3) and (E4) are obtained by using the sim-

plified coefficients e + and h +, where the small quantities

of ~,, z,E/nokOT, aid Y,M\~okoT” are neglected.
By putting

R = ~ (nokoT)27-
1

U.
(E5)

and calculating the parameter A numerically, we find that

[

0.3, TEo~ and TMo~ modes

A= 0.4, HE~Q modes (E6)

0.6, EH.~ modes

for several lower order modes of n =1, 2, 3 and q =1,
Pi

)[

~_ 4n(n+l) ‘1

T
(D3)

u; 2,...,5,

U.

[ 1)
2n(n+l) ‘i

. ‘z,~ + uo —
noko T U. T

where

Pl=@T~- z=?
2n nokoT

)u, -(n-2)

[1]

(D4)
[2]

[3]

(D5)

REFEmNCES

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and
dielectric waveguides for long distance optical transmission and
laser$” Bell Syst. Tech. J., vol. 43, pp. 1783-1809, July 1964.
E. Garmire, T. McMahon, and M. Bass, “Flexible infrared wave-
guides for high-power transmission;’ IEEE J. Quantum Electron.,

VOI. QE-16, pp. 23–32, Jan. 1980.
M. E. Marhic, L. I. Kwan, and M. Epstein, “ Opticrd surface waves
along a toroidal metallic guide,” Appl. I’hys. Lett., vol. 33, pp.
609-611, Oct. 1978.



MIYAGI d al.: CIRCULARHOLLOW WAVEGUIDES 521

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Hidaka, T. Morikawa, and J. Shimada, “Oxide-glass cladding
middle infrared optical waveguides,” Trans. Inst, Electron. Com-
mun. Eng. Japan, vol. J64-C, pp. 590–596, Sept. 1981 (in Japanese).
M. Miyagi, Y. Aizawa, A. Hongo, and S. Kawakami, “Fabricating
dielectric-coated metallic hollow wavegnides for IR transmission: A
novel technique,” in Tech. Dig. CLEO ’83, 1983, pp. 210–211. See
also M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrica-
tion of germanium-coated nickel hollow waveguides for infrared
transrnission~ Appl. Phys. Lett., vol. 43, pp. 430-432, Sept. 1983.
E. Garmire, T. McMahon, and M. Bass, “Propagation of infrared
light in flexible hollow waveguidesj’Appl. Opt., vol. 15, pp. 145-150,
Jan 1976.
F. K. Kneubtil and E. Affolter, “Infrared and submillimeter-wave
waveguides,” Infrared and Millimeter Waves, vol. I, Sources of
Radiation, K. J. Button, ed. New York: Academic Press, 1979, pp.
235-278.
M. Miyagi, ‘<Bending losses in hoflow and dielectric tube leaky
waveguides,” Appl. Opt., vol. 20, pp. 1221–1229, Apr. 1981.
M. E. Marhic and E. Garrnire, “Low-order TEO operation of a
C02 laser for transmission through circular metd%c waveguideb”
Appl. Phys. Lett., vol. 38, pp. 743-745, May 1981.
M. E. Marhic, “Mode-coupling analysis of bending losses in IR
metallic wavegnides,” Appl. Opt., vol. 20, pp. 3436–3441, Oct. 1981.
H. G. Unger, ‘<Lined wavegnidefl Bell Syst. Tech. J., vol. 41, pp.
745–768, Mar. 1962.
M. Miyagi and S. Kawakami, ‘<Design theory of dielectric-coated
circular metallic hollow wavegnides for infrared transmission,” IEEE

J. Lightwaue Technol., vol. LT-2, no. 2, pp. 000-000, Apr. 1984.
A. E. Karbowiak, “ Theo~ of imperfect wavegnides: The effect of
wall impedance,” Proc. Inst. IHec. Eng., vol. 102, pp. 698–708, Sept.
1955.
E. Snitzer, “Cylindrical dielectric waveguide modes: J. Opt. Sot.
Am., vol. 51, pp. 491–498, May 1961.
M. Miyagi, A. Hongo, and S, Kawakami, ” Transmission character-
istics of dielectric-coated metallic waveguide for infrared trausrnis-
sion: Slab wavegnide model; IEEE J. Quantum Electron., vol.
QE-19, pp. 136-145, Feb. 1983.
H. Krammer, ‘<Propagation of modes in curved hollow waveguides
for the infrared; Appl. Opt., vol. 16, pp. 2163-2165, Aug. 1977.
M. Miyagi and G. L. Yip, “Field deformation and polarization
change in a step-index optical fibre due to bending,” Opt. Quantum
Electron., vol. 8, pp. 335-341, 1976.

*

Mitsunobu MIyagi was born in Hokkaido, Japan,
on December 12, 1942. He graduated from
Tohoku University, Sendai, Japan, in 1965, and
received the M.E. and Ph.D. degrees from the
same university in 1967 and 1970, respectively.

He was appointed a Research Associate at the
Research Institute of Electrical Communication,
Tohoku University, in 1970. From 1975 to 1977,
on leave of absence from Tohoku University, he
joined McGilf University, Montreal, Canada,
where he was engaged in the research on opticaf

communications. Since 1978, he has been an Associate Professor at
Tohoku University. His major interests are in opticaf communications,
especially in developing IR waveguides for high-powered C02 lasers. He
also carried out some work in electromagnetic theory, such as nonlinear
wave propagation.

Dr. Miyagi is a member of the Institute of Electronics and Comrmmica-
tion Engineers of Jalpan, Opticaf Society of America, and American
Institute of Physics.

+

Kazubide Harada was born in Aichi, Japan, on
January 23, 1960. He received the B.E. degree
from Gifu University, Gifu, Japan, in 1960. He is
working towards the M.E. degree at Tohoku Uni-
versity, where he is studying IR waveguides.

Mr. Harada is a member of the Institute of
Electronics and Communication engineers of
Japan.

*

Shojiro Kawakand (S’60-M69) was born in Gifu,
Japan, on November 8, 1936. He received the
B.E. degree in 1960, the M.E. degree in 1962, and
the Ph.D. degree in 1965, all from the University
of Tokyo.

In 1965, he was appointed a Research Associ-
ate at Tohoku University, appointed as an Assis-
tant Professor in 1966, and since 1979 has been a
Professor. From 1960 to 1965, he was engaged in
the research of millimeter-wave detection systems
and microwave switching circuits. Since 1965, his

main interest has beeu in the field of opticaf communication. In his eiyly
carrier in oDticaJ communication, he has had much interest in near
square-law f;bers, and later also in W-type single-mode fibers. Recently,
he has been interested in modal power dynamics in multimode fibers.
Meanwhile, he has carried out some work in electromagnetic theory and
also has been interested in experimental investigations of opticaf devices,
such as fiber Faraday rotators and metal-dielectric multilayer polarizers.
From 1983 to 1984, he was with the Massachusetts Institute of Technol-
ogy, Cambridge, MA. He is the author of the book “ Hikari Doharo”
(Opticaf Wavegnides) In 1977, he was awarded the Ichimura Prize for his
contribution to W-type fibers.

Prof. Kawakami is a member of the Institute of Electronics and
Communication Engineers of Japan.


