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Wave Propagation and Attenuation in
the General Class of Circular
Hollow Waveguides with
Uniform Curvature

MITSUNOBU MIYAGI, KAZUHIDE HARADA, aND SHOJIRO KAWAKAMI, MEMBER, 1IEEE

Abstract —A general method has been developed to evaluate the propa-
gation constant in oversized circular hollow-core waveguides characterized
by a surface impedance and admittance due to a uniform bend. Completely
different formulas are obtained for the attenuation constants of the modes
in metallic or dielectric hollow waveguides from those obtained by Marcatili
and Schmeltzer [1]. Electric-field lines are also presented for several lower
order modes in bent waveguides.

I. INTRODUCTION

OLLOW DIELECTRIC or metallic waveguides are

possible transmission media when the absorptions of
dielectric materials are too high to transmit the guided
powers in dielectric media. When optical fibers with low
losses were not available, hollow waveguides were pro-
posed to carry optical signals, and very detailed analyses of
them were done by Marcatili and Schmeltzer [1]. In con-
nection with the delivery of infrared CO, laser energy,
hollow waveguides are regarded again as transmission
media, and several types of hollow waveguides have been
proposed and fabricated [2]-[5]. One of the most serious
problems in hollow waveguides is the increased loss due to
bends.

To evaluate bending losses in circular waveguides, a
theory presented by Marcatili and Schmeltzer [1] (hereafter
referred to as the M-S theory) has been used over the past
two decades in infrared as well as in submillimeter wave-
lengths [1], [6], [7]. However, as pointed out by Miyagi {3],
the M-S theory didn’t consider field deformations depend-
ing on R~2 (R; bending radius) which substantially affect
the bending losses in their formulation, i.e., the power
losses can be evaluated by the ratio of the radiated power
from a waveguide per unit length and the total power
carried by the mode of the waveguide. Recent experimental
studies on bending losses of the TE, mode in metallic
waveguides at infrared [9] also suggest that the M-S theory
should be modified so as to include high losses due to the
mode coupling effect. A theory was developed by Marhic
[10] to predict the bending losses by using the mode
coupling analysis similar to one done for waveguides at the
microwave region [11]. However, his analysis cannot be
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applied to infrared metallic waveguides where the imagin-
ary part of the complex refractive index of the metals is
much larger than its real part and the mode structure is
different from that in waveguides at the microwave region
[12]. Therefore, at present, we can say that there are no
theories available to properly predict bending losses in
circular dielectric or metallic waveguides at optical wave-
lengths through submillimeter wavelengths.

In this paper, we present a new method to evaluate the
propagation constants in the general class of circular bent
waveguides characterized by a surface impedance and ad-
mittance. The new method requires evaluation of the field
deformations to R~* only, not to R™2. A general expres-
sion of the propagation constant is obtained which is valid
to any circular waveguide, and explicit expressions of the
phase and attenuation constants are given for waveguides
with a small surface impedance and admittance. It is
shown that the bending loss formulas obtained for the
metallic or dielectric hollow waveguides are completely
different from those of the M-S theory and more accurately
explain the experimental results of high bending losses of
the TE; mode in circular metallic waveguides [9].
Electric-field lines of the modes in bent waveguides are
also presented.

II. GENERAL EXPRESSIONS OF FIELD
DISTRIBUTIONS AND PROPAGATION CONSTANT IN
BENT WAVEGUIDES

A. Integral Representation of the Change of Propagation
Constant

Let a waveguide with a hollow-core radius T be bent
uniformly with a large bending radius R. We employ the
toroidal coordinate system [1] for analyses as shown in Fig.
1 and assume that the refractive index of the hollow-core is
n, ( =1), and media in r > T are characterized by a normal-
ized surface impedance zry and yry at r =T [12}, [13] as
follows:

o ﬂ) == nOkOJ’TM (1)
r=T
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z

From the following Maxwell’s equations in the hollow
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z
Fig. 1. Coordinate system for the curved circular hollow waveguide.

region:

19 r . : r
- W[(H— Ecos0)Hz]+J,3H9 = Jwe0n3(1+ Ecosﬂ)Er

(2)

— jBH, - gr-[(l+ —Ig-cosﬂ)Hz] = jweon§(1+ —I%cosﬂ)EG
)

1 10H
P P JjwegntE, (4)

d
‘a—r(rHo)“

~ |

3—(90 [(1+ %cos&)Ez] + JBE; = — jw,uo(1+ %cos O)H,
(5)
— JBE, — air [(1+ %cosﬂ)Ez] = jw,uo(1+ %cosa)Ho
(6)
(7)

one can express the transverse field components by the
axial components E, and H, as follows:

10

19, 1 0E,
r dr

rEy) =7 g =~ JenoH,

IE 0H,
E--) ! ok + L0 2L
r 2712 r 2 2 ar r a0
nk3(1+ foosd) - B
(8)
_ 1 noko 9E, gg}
Eg—122 r 2 z[rww‘uoﬁr
nok0(1+§cos0) -8B
€
k
H=-"%p g ok, (10)
Wy Wity

where time and z dependences of the form exp j(wt — Bz)
are suppressed, and it is assumed that

nokoT>1 and R>»T

(11)

are needed to derive (8)—(10). One should also note that B
is replaced by nyk, inside the parentheses in (8) and (9).
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By expanding E, H, and 8 as

1 1

“EO4+FO 4 L g@ 4 ...

E=E®+ZE +R2E + (12)
1 1

—HO +—HO+ L HO 4 ...

H=H®+_H +R2H + (13)
1

,8=,30+F8ﬁ+"' (14)

and substituting (12)-(14) into (8) and (9), one can express
E and E{"(i=0,1,2) as follows:

‘ T* koT\?
E,(‘)=2ﬂ]£20—8BE,(’_2)-—2(@uL) 7
U
. T\? IE®  wp, dH®
. (=1 _ ;f — v S W ) Z
cos JE; J(u) [nok0 ar + a0
(15)
T? koT\?
Ea(’)= 2n0k20 6,3E0(1_2)*2(11%) ’
T\*| nyk, OEW aH®"
. (=1 _ ;f 070 7~z 7z
cos 0E; ](u)[ T 30 ko™
(16)
where u is defined by
u® = (nfk —p3) T2 17
oo (]

Quantities with negative superscripts are understood to be
zero. One should note that [1, eq. (34)], which describes the
first-order perturbation solution, is incorrect as can be seen
from (15) and (16) of the present paper.

By substituting the corresponding magnetic-field compo-
nents H" and H{" into (4), one obtains the differential
equations to determine E{V(i = 0,1,2) as follows:

2
VD +( %) E = 2nok SBEC

—2n}kircosED + J2nok  ESTD (18)

where
E{™D=E("Deos§ — ES~Dsing (19)
and v? is defined by
72 144 1 92
2 9 - v -
Vi e T A e 20)

Similarly, one obtains
2
VEH? + (%) HY=2nokdpH 2

—2ngkireos GHS ™D + j2noko HOD,  (21)

Now, let us mention the evaluation method of 8B. In the
ordinary method of determining the change of the propa-
gation constant due to bends, one has to derive a character-
istic equation for 88 which requires solutions up to E® and
H®. To do this, extremely tedious and cumbersome calcu-
lations are needed. In this paper, we present a simple
method which requires solutions only up to E® and H,
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Making
EOVE® - EQy2EO (22)

by use of (18), and integrating in the hollow region, one
obtains

) ©)
§e025E - 52 ac

=2npky f [3,315}0)2— nykorcos §EOE® + jE,Sl)Ez(O)] ds
(23)

where the Green’s theorem was used to transform the
surface integral in r < T into the line integral around the
periphery r = T of the hollow region. Substituting dE®/ dr
and 3E®/dr obtained from (15) into (23), and using the
boundary conditions (1), one obtains

38 /Ez<°)zdS+ j ¢H(°)E(°)dC
wfono
= noky [rcos OELED - j——HPED | dS
w€0n0

1

+ nokorcos QEQHD — j—

Jweon%¢{ 0o = 97T 7y

aH(O) IH®?
v)) —_ FO Z
where

H}Sl) = HWsin6 + H§Vcos . (25)

Similarly, integrating H® v2H® —
hollow region, one obtains

O go_ i L LrOF0
5/3[ sz dS ]wMO¢E9 H dC]

HPvVH® in the

= noky [ [rcos OHOH® + j—o-):L—OEy(l)HZ(")] ds

1
—j—l— {nokorcosﬁHz‘O)E,?HjE;
IED IE®

®ho
30 50 ]} ac.

By making (24)X weyn3 +(26)X wp, one finally arrives
at

ap{f[weonoE“’) + wpoHO'| ds

[ HO ~ HO® (26)

+ il HPEO~ EPHO) dc]
= noko{ f rcos 8| wegnd EQE® + wp HOH®] ds
+ [[EPHO - BOEO] ds

+ js6rcos0[Hgl>E;°> ~ EPHO) dC}. (27)
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Equation (27) clearly shows that the change of the propa-
gation constant can be evaluated by using only zeroth and
first-order field distributions in a bent waveguide. The real
and imaginary parts of 88 lead to the changes of the phase
and attenuation constants of the modes due to bends,
respectively.

B. Field Distributions and Complex Propagation Constant

In this section, we present the expressions of the field
distributions and the propagation constant in the general
circular waveguides with an arbitrary surface impedance
and admittance.

As is well known, the zeroth order solutions EO, EP,
E@, and HY are given as follows [14]:

1-P 1+P
E0= (1520, w0 =252, (u0) | cos (0 + )
(28)
1-P 1+P .
E{SO):_[ 5 Jn_l(up)+—Z——Jn+l(up)]51n(n0+00)
(29)
EO=j k Vi J,(up)cos(nd + 6,) (30)
HO—— j[PK0) % by (uoVsin(nb+6,)  (31)
z IT nkT

where n is the integer descrlbing the azimuthal dependence
and p is defined by r/7. The normalized radial phase
constant « and the parameter P deduced from the boundary
conditions (1) are determined from

I (u) . ZT1R J, (u) n?
[u'](“) nokoT HuJ (u) ]n k T _;Z (32)
[uJJ((uu)) tJ ni?:T} (33)

By substituting (28)—(31) with (10) into (18) and (21),
and integrating £V and H® (see Appendix A), one ob-
tains

E0= jnOkOTZ{[e+ Jyr(up)+ %PZJn—l(uP)
+12iu£p,]n(up)] cos[(n+1)8+6,]
+ [e_Jn_l(up)— %PZJnH(”P)

(34)

nok P
o;) 2 )"okoTz{[h+ Jn+1(“P)_ ZPZJn—1(“P)
0

1+ P
2u

+ %ﬁpfn(up)T cos[(n—-1)0 + 00]}

HO =

z

sin[(n+1)0 + 6]

pJ,(up)
P 2
+ h-"hl—l(up)+_4—p Jn+1(up)

+ 1L 0r, () sin[(n-1)0+6,]}. (39
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The transverse field components of E® are calculated by
using (15) and (16) as follows:

5= LRIYT () cos[(n 1046,
+4, (p)eos[(n=1)0+ 6]} (36)
EQM = — Mff—f—T {¥g,(p)sin[(n+1)8 +6,]
+_(p)sin[(n—1)0 +6,] } (37)
where
4, (0) = € L aup) +h 2L (up)

+ (n FDH(AFP)

1 2
4y pJn?l(up) 4pJn(up)

(38)

, n+l
‘Poi(P) = hi‘lnirl(up)+eiu—p']rtil(up)

N (nF1)(1FP)

id 2
4u pJn?l(uP)_‘- 4pJn(up)

(39)

The arbitrary constants e , and 4, determined from the
boundary conditions (1) are expressed as follows (see Ap-
pendix B):

1

$(li P)(Jntl i2Zn)](n i1)JnJ_r1
+[(nP +1)J, 5,

= (14 P)(J,11+2Y,)]4Z, 11}
1
V4Ani1

~ (1 P)(J, 4 22Y) (2 1), 4,
+ [("+P)Jn¢1' uPZ, 1,
F(14P)(J, 11 £2Z,)]uY, .1}

e, == {[(”"‘P)Jnszl““PZnﬂ

—uY, 5

(40)

h,=% {({(nP+1)J, 51— uY, 5

H-

(41)

where the argument of the Bessel functions is «, and Z,,
Y,, and A, are defined by

’ . u
an‘,n(u)-i-]nokoTZTEJn(u) (42)

’ . U
Yn_Jn(u)—f—]nOkoTyTMJn(u) (43)
A, =u?ZY,—n*J}(u). (44)

By substituting (34)—(37) into (27) and using some integral
formulas containing the Bessel functions and powers of r
(see Appendix C), we finally arrive at the general expres-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 5, MAY 1984

sion of 88 as follows:

nokoT YT
88 = (—Oi(—l)l—z)——{(eJr +e )ni2—(n+P)J, 1J, 4]
~(h, +h_)|[nPI} = (nP +1)J,1J, 4]
—(€+ —h, )(1+ P)Jan+2
+(e_+h_)
(1= P)J,J,_,
1 2
+ E[(1-P) QI Ty + i d,s)
+(1+P)2(2Jan+2+Jn~1']n+3)]
+6,,1Qc03200>/{(1+1’2)(-fnz“ n+1Jn-1)
J
+[(1—P)ZJ,,_l—(1+P)an+1];"} (45)
where

Q=(e_P+h_)JZ—(e_+h_)
(U P) oy + 5 (1= P2, (46)

and the argument of Bessel functions is understood to be
u. To evaluate e_ and %_ in (46), one has to put n=1 in
(40) and (41). We have also proven that (45) is exactly the
same with that obtained by using the characteristic equa-
tton after rather tedious calculations.

By dividing u into the real and imaginary parts as

(47)

one can deduce the changes of the phase and attenuation
constants due to bends. However, it is rather cumbersome
to derive them for arbitrary surface impedance and admit-
tance. Furthermore, we are mainly interested in transmis-
sion of the HE;; mode in the infrared waveguides with a
small surface impedance and admittance [12], [15]. There-
fore, we will discuss this case in more detail in the next
sections.

III.  'WAVE PROPAGATION AND ATTENUATION IN
CIRCULAR WAVEGUIDES WITH SMALL SURFACE
IMPEDANCE AND ADMITTANCE

u=ug+ ju,

A. Phase and Attenuation Constants
When the following conditions are satisfied:

[z1el < nokoT/ ugs | yrml < nokoT/ug (48)

u, is determined from
Ji(up) =0,  TEy, and TM,, modes  (49)
J,51(#9)=0,  HE, and EH, modes  (50)
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and the parameter P becomes

®, TE,, modes
P= 0, TM,,, modes
- Uy Z1g ~ V1™
1 J 2n ”okoT ’ HEnq and Ean modes

(51)

where the upper and lower lines in (50) and (51) corre-
spond to the HE, , and EH,,, modes, respectively, and only
the first-order terms of zrg/nok,T and yry/nok T are
considered in (51).

By substituting P and (49) into (40) and (41), and
retaining the first-order terms of u;, we can express ¢ . and
h . of the TE,, modes as -

I S L (
€, =e_ _‘]Zuo(ui nOkOTyTM)P (52)
_ 1 2u;
hy=—h_= 4(1 juo )P (53)
and 88 as follows:
_ (”okoT)sT 2 _
=00 1+ (w35 | (59

which leads to

Re(B)—n0k0[1+ > (’%‘—;-T)z(%)z] (55)

As u, is related to the attenuation constant «,, in the
straight waveguide as
uo = nokoTzaw (56)
and a is '
ay, =nokyg———3 Re(ZTE) (57)
(”o 0 )

for the TE,, modes, one can express the attenuation con:
stants a of the TE,, modes in the bent waveguides as

follows:
a=¢xw{1— %(%92)4(%)2{1—3%%}}. (58)

For the TM,, modes, one has

1 2u;
€, =—€._ =Z(1—j%) (59)
1 Uy
h+ =h_=- ]Zuo(ut - n-k TZTE) (60)

and

.2 U
1+]u0(u, 3n0k0TZTE)} (61)
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, TABLEI

PHASE AND ATTENUATION CONSTANTS OF THE MODES IN CURVED

CIrcULAR HOLLOW WAVEGUIDES WITH A NORMALIZED SURFACE
IMPEDANCE Zg AND ADMITTANCE Y.

PHASE CONSTANT ATTENUATION CONSTANT
MODE | " Re(B)ink, o /oy %
& _ 2
AEM)
TEoq e -]
L (RATY(T .
e Ct) b R T (0
1 METN /T ¢
o =R -3 <r,ﬂ>]
1 mETS Ty, 4ntnr2)
HE g “ le5 ) -2 =
1( T)(T)[ u(m)J e (=0
EH,q R *%Sﬁ'?((?m Z-)(u -2)e2q)

which leads to the attenuation constants as

o [ e
where

__ Y
("okoT)3

The expressions {58) and (62) clearly show the coupling
effect between the TE,, and TM,,, modes.

For the hybrid modes, i.c., n # 0, by usinge , and 2, in
Appendix D, we can express 48 as follows:

ay, = Nokg RC(YTM)- (63)

(nokoT)'T 4n(nF2)
58 = P Btk
12u; ug
8By, 3, 2n(nF2)
+ j . [1+4n(n+2)+ : ]

3z + yom) [, — A2
]"—‘Z-nk—T“[n +(n+2)]

o 3(zre - yTM)
+ jo4 an ol (u2 —2)cos26,}. (64)

Table I summarizes the phase and attenuation constants
of all modes normalized by nyk, and a,, in the straight
waveguide, respectively, where the attenuation constants
a,, of the hybrid modes are

2
. nok —u"_Re(ZTE + ym)-
(nok oT)
It should be noted that only the attenuation constants of
the HE, , and EH, , modes depend on the orientation 6, [1].

Let us compare the above results of the attenuation
constants in the dielectric or metallic hollow waveguides
with those of the M-S theory. Let a complex refractive
index of the medium outside the core be nyv. By using a
simple method to calculate the normalized surface imped-

(65)

U =5 Mo



TABLE II
NORMALIZED ATTENUATION CONSTANTS @ /¢, IN CURVED
DIELECTRIC OR METALLIC HOLLOW WAVEGUIDES PREDICTED BY
THE M-S THEORY AND OQURS

MODE M-S THEORY PRESENT THEORY
yt
1 g7y T &
TEpq \ 1-gCatf 1~ R —— ]
ia A(W_ﬁ,T)(T)z G
3\, RV . 2
™ 1 ETYT &, [y
a e Uk
i YR ]
4 2
HE, 1+___(‘niT>(l){ n('nn) ]+_31L::_T)%){1_ Mn(('::fz)
ALO-R]
Ean *735 1@‘“ °} 1%51"_——[)"7](%_2)@26'}
A [ 55k] A7l

M-S Theor; N

Experimental results

TRANSMISSION
©
o

L Ref (9)
| :4/Eq (70)
0 o .
0 5 10 15 20
1/R {1/m)

Fig. 2. Transmission versus curvature for the TE; mode in a circular
silver waveguide with n =134, k = 75.2, 2T = 500 pm, and length of 26
cm at A =10.6 gm. Dashed and solid lines represent the transmission
predicted by the M-S theory and ours, respectively.

ance and admittance [15], one obtains

= (p? —1)—1/2
~12

(66)

ymma=r2(r*=1) (67)
Therefore, the attenuation constants of the modes can be
summarized as in Table II. The difference between the M-S
and our theories is clearly shown.
For the metallic hollow waveguides with »=n — jk,
where n and k are much greater than unity at the infrared,
we have

" (68)

n* + K2
RC(J’TM) =n (69)

Re(zqg) =

and

nokoT

o/, 14—2( . )(Tj?n2+xl) (70)

for the TEO , modes. By considering the fact that the values
of n? + k? in most metals at the infrared are about several
thousands, one can see that (70) is quite different from that
of the M-S theory. In fact, (70) can more accurately explain
the measured high curvature losses of the TE, mode in
metallic waveguides as shown in Fig. 2. Our theory also
predicts that the attenuation constants of the TM,, and
several hybrid modes reduce due to gradual bends as
shown in Figs. 3 and 4, which is very similar to the
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R (m)
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1 T 2
1x0
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£ I 1 &
) 5 L ™ -7 »5;
-y " z
- 1, 2
- 1 E
TMo . <
_ 1
0 R PR
0 20 40
(ko T TIR

Fig. 3. Attenuation constants of the TM,, modes in a bent aluminum
waveguide with # = 20.5 and & = 58.6. The dashed and solid lines are
a/a predicted by the M-S theory and ours, respectively. Right and
upper scales in the figure correspond to the attenuation and the
bending radius of the waveguide with 7=1500 pm at A =10.6 pm.
Small circles correspond to the upper limit of applicability of the
theones (see Appendix E).

ATTENUATION (dB/m)

20

(ngko T TR

Fig. 4. Attenuation constants of the HE, , modes in a bent aluminum

waveguide. Parameters are the same with those in Fig. 3.
attenuation constants of higher order modes in slab wave-
guides [8], [16].

B. Electric- Field Lines of Modes in Bent Waveguides

In straight circular hollow waveguides where |z g|/nok T
and | youl/nokoT are small, we have sufficient knowledge
about the electric- and magnetic-field lines of the modes
[1]. However, no descriptions of them have ever appeared
in bent waveguides.

By simplifying the coefficients e, and 2., and the
parameter P by neglecting small quantities of u,,
zrp/nokoT, and yp/nokoT, we can express the trans-
verse-field components of the hybrid modes as follows:

(”okoT)2T
4uyR
: { gnxl(P)COS[(” +1)6 + 00]
hn;l(p)cos[(n -1)6+ 00]}

("okoT)2T
4uyR

E =J z1(ugp)cos(nb + 6,)+

(1)
Eg=F J,+,(uop)sin(nd + 6,)F

-{gn;l(p)sin[(n +1)6 + 90]

hn;l(P)Sin[(”“‘l)g”"eo]} (72)
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TEg mode

TM,, mode

@\@\
WK@/W

HEnmode(Gg-O)

HEZ‘ mod e(90 =JU2)

@@@

Fig. 5. Electnc—ﬁeld lines of the modes in curved hollow waveguides for
@) (nokoTY*T/R =0, (b) 5, and (c) 10, respectively.

EH,, mode(e0 =0)

EH,, mode(e° =0)

DD

EH,, mode(8,=1L/2)

DB

Fig. 6. Electric-field lines of the modes in curved hollow waveguides for

@) (nokoT)*T/R =0, (b) 5, and (c) 10, respectively.

where
gn(p) = Jn+1(u0p)+pz']n—1(u0p)
hn(p) = Jn—l(qu)+szn+1(qu)

and the upper and lower lines correspond to the HE, , and
EH, , modes, respectively. The transverse-field components
of the TE,,(TM,,) modes are simply obtained by putting
n=0 and 6, = 7/2(0) in the expression of the HE, ,(EH, )

modes.

(73)
(74)
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Electric-field lines of the modes are determined from

E
1 dr £, (75)

7 d8 E,

and magnetic-field lines are perpendicular to the electric-
field lines in r < T as seen in (10). One should note that the
electric-field lines of the HE;, modes never change due to
bends [17], although the field distributions change.

Several numerical results obtained by integrating (75) by
the use of the Runge-Kutta method are shown in Figs. 5
and 6 for several lower order modes. Generally speaking,
electric-field lines become unsymmetrical, and some char-
acteristic features peculiar to the modes, e.g., the center of
the electric-field lines in the TE,; mode and a crossing
point in the TM,, mode shift toward the outer direction
away from the center of the curvature. Although field lines
behave in complicated ways near the plane of the curva-
ture, they are not so essential because the intensities of the
modes are weak there.

IV. CONCLUSION

A general method is presented to evaluate the propaga-
tion constant in circular hollow waveguides. Completely
different formulas are obtained for the attenuation con-
stants of the modes in metallic or dielectric waveguides
from those obtained by Marcatili and Schmeltzer [1].

Attenuation characteristics of the dielectric-coated
metallic wavegunide [12], [15] will be discussed elsewhere
based on the new bending loss formulas.

APPENDIX A
Differential equations for E® and H® are described as

v2EZ<1>+(—"T-,)2Ez“>
= — jnoko{[upJ,(up)+(1+ P)J, .1 (up)]
-cos[(n+1)8 + 6,]

+[upJ,(up)— (1~ P)J,_,(up)]

cos[(n—1)0+6,]} (A1)
2H(1)+( T) HO

=j( noky

wpkg

© |agko{ [ Puply () +(1+ P}, (u0)]

-sin[(n+1)8 + 6,]
+[ Pupd,(up)+ (1= P)J,_(up))

-sin[(n—1)8+6,] }. (A2)

APPENDIX B

From the boundary conditions (1), we obtain the equa-
tions to determine e , and % , as follows:

. u
¥, (1)=- Sk T’ ™

Bsa(u)+ 2L 1 ()

(B1)

e, J, +1(u)+
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. U
Y, (1) = "k T

[renaF L= L g @)
(82)

APPENDIX C

Several integral formulas to evaluate 68 of (45) are listed
as follows:
2

[ xdx =5 (T2 = 41 ) (c1)
3

[ha() ()2 dx =T (faady = Dsndys)  (€2)
4

Jhea ()R (x)x?dx =T (Jwah = dpsshz)  (C3)

/an(x)x3dx“_(3‘]2 +1J _Jn+2‘ln—2) (C4)
5
/ 21(x) S (x)x* dx-——

(4 +1J 3J+2‘]n+1 n:FZ +3)

(C5)

where the argument of the Bessel functions in the right-hand
sides of (C1)—(C5) is x.

APPENDIX D

For the HE,  modes, e and h , are expressed as

e+=% J5us [(n+1)(1 4—)u—n

-1
Uy ZTE_n(n+1)Pl 1_4n(n+1)
nokoT Uo ul
(D1)
e =—1 J5— Du,—(n-2)
- 4 2
0 n(n+1)
n kOTyTM+ 0 I’l (DZ)
1 Uy
h, =3"J3 {(n-i-l)(l——o)u ~n- TyTM
P -1
N _2n(n+1)}_i 1_4n(n+1) (D3)
uo 2 u(z)
1 1
hV=—Z+jm{(n—l)u,—(n—2)
Uy _2n(n+1) | B
nOkOTZTE+ == —"|3 (D4)
where
2
_ Uo Yt T ZTE
F=an nok T (D3)

To obtain the coefficients e, and 4, for the EH,,
modes, we first change n to —#» in (Dl) (DS) and only
replace —e_, —e,, h_, and h, of the HEnq modes by
h,,and h_ of the EH,, modes.

e+ B e_ s
APPENDIX E

We discuss the range of applicability of bending loss
formulas given in Table 1. For the electric and magnetic
fields obtained by the perturbation theory to describe the

actual fields properly, it is necessary that
R> R, (E1)

where R, is defined by

1 1
0 — 1 F[O _ f{l
‘Ez( )lmax_' R |Ez()|max or | z()lmax~ R | z()lmax'
! !

(E2)
For the TE,, and TM,, modes, we obtain

(”okoT)zT

2u, pJO(qu)

R, = (1= 0?) S (uop)+ -

max

(E3)

and

(nok T) T['

1= H(“OP)I

4
pJnil(uop)iu—opJn(uop)‘

/(400 ) | max (E4)

max

fJnil(”op)""PZJnm(“oP)l]

for the hybrid modes, where the upper and lower lines
correspond to the HE,, and EH,, modes, respectively.
Equations (E3) and (E4) are obtained by using the sim-
plified coefficients e . and 4, , where the small quantities
of u,, zrg/nok,T, and yry/nok,T are neglected.

By putting

(”okoT)zT

R1=A
Uy

(Es)

and calculating the parameter 4 numerically, we find that

0.3, TE, ,and TM,, modes
A={04, HE, , modes (E6)
0.6, EH,,, modes

for several lower order modes of n=1, 2, 3 and ¢ =1,

2, +,5.
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